
Tourism analysis using object detection with deep neural networks
NHL Stenden Centre of Expertise in Computer Vision & Data Science

Alpay Vodenicharov
Supervisors: Ioannis Katramados, Martin Dijkstra

Abstract—Tourism is a crucial sector for every country. It is connected with several other important sectors, such as finance and
transportation. Namely in certain countries it could be a key component in financial growth, therefore it is important to be able to
measure tourism. Currently, there are no reliable methods to do so. This paper will concern if the measurement of tourism using
deep-learning techniques is possible. The first steps of this goal is to detect objects of interests, such as cars and marinas in open
space areas using satellite/aerial images. After experimenting with different algorithms, models and datasets, it is concluded that
SCRDet-R2CNN is the best performing CNN with rotated bounding boxes, with an F1 score of 77.99 for small vehicles and 87.89
for large. An honorable mention is plain Mask-RCNN, which gave highly accurate results despite being trained on a much smaller
dataset, accomplishing an F1 score of 67.59.

1 INTRODUCTION

Tourism is an important social arrangement which has an impact on
many fields, most importantly in the economy, society and in the
environment. Tourism does not have its own sector - it consists of
several other sectors, which are also factors for its success, such as
transportation, accommodation, entertainment, finance, agriculture,
catering, etc. The extension of tourism into those sectors has given it
many definitions, and furthermore its steady growth has made the
task of analysing and measuring the general tourism rate more
sophisticated than in the past. To encourage tourism growth, it is
important to improve the analysis of tourism.

With the current available technology, the task of measurement and
calculation is mostly done automatically with computers, however
with tourism that is still a challenge. Few potential key methods of
tourism measurement are the following:

• Surveys

• Tracking visitations to attractions, accommodation
establishments, tourism information centres, events, etc.

• Open-space occupancy (e.g. parking lots, marinas)

This paper concerns the quantification of tourism by calculating the
occupancy of open spaces such as car parks and marinas. This will
be achieved by gathering a dataset of satellite images zoomed into
open spaces (e.g. parking lots) and the development of a convolutional
neural network to detect the objects of interest (e.g. cars or boats).
Once sufficiently trained with the dataset, the CNN must be able to
detect and count objects in a given image. A state-of-the-art satellite
image dataset called DOTA by Zhen Zhu et. al[1], which consists of
more than 10 000 cropped images, could also be made use of.

Several other researchers have similar work, such as the articles
“Segment-before-Detect: Vehicle Detection and Classification
through Semantic Segmentation of Aerial Images”[2] by authors
Audebert N., Le Saux B., Lefevre S., which is making use of a 3-step
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architecture - semantic segmentation to create pixel-level class masks
with a convolutional neural network, vehicle detection by regressing
the bounding boxes of the elements and lastly - object detection with
a traditional classification CNN, and “Deep Learning Approach for
Car Detection in UAV Imagery”[3] by Ammour N., Alhichri H., Bazi
Y., using over-segmentation to decrease the amount of analysis to be
done, feature extraction and region classification. Further
object-detection algorithms and model structures could also be
effectively used, such as YOLOv3 and Mask-RCNN. YOLOv3,
(Joseph Redmon, 2018)[4] an improved version of the Yolo
algorithm, is one of the most precise and fast object-detection
algorithms. The initial version, Yolo, processes images at 45 frames
per second and a smaller version - 125 frames per second,
outperforming most state-of-the-art solutions to object detection at
the time. YOLOv3 introduces a bigger network with higher accuracy
and roughly the same speed. The YOLO network’s architecture
consists of 24 convolutional layers followed by 2 fully connected
layers. The convolutional layers of the network are used for feature
extraction on the images. Lastly, the fully connected layers give an
output of probabilities and coordinates. Furthermore, YOLO’s
detection method is able to make context out of the picture as a
whole, which reduces the chances of mistaking the background as the
desired object. Another object detection and instance segmentation
algorithm, Mask-RCNN (Kaiming He et al. 2018)[6] referred by the
paper as a conceptually simple, flexible and general framework for
object instance segmentation and detection. Mask-RCNN extends
Fast RCNN with the addition of a branch for the prediction of an
object mask on top of the already existing bounding box recognition
branch. This concludes that in comparison to Fast RCNN, which has
two outputs - class label and an offset of bounding boxes,
Mask-RCNN has an additional output of the object mask.
Furthermore, one of the main differences is that it has pixel-to-pixel
alignment, which is missing in both, Fast and Faster RCNN. Another
key difference is in the detector - the detection in Faster RCNN
consists of two stages - the first stage makes proposals of object
bounding boxes using a Region Proposal Network. The second stage
is performing feature extraction from the bounding boxes,
classification of objects and finally - bounding box regression.
Mask-RCNN is almost identical, the one key difference being in the
second stage, where it predicts the class and box offset in parallel
with outputting a binary mask for every Region of Interest.
Mask-RCNN is also easily generalizable for other tasks, making it a
desirable choice for different projects. Mask-RCNN and YOLOv3
are both great state-of-the-art choices, however, their efficiency
depends on the use cases. The original YOLO algorithm’s paper
suggests that one of the limitations of the algorithm is the difficulty to
find small objects, especially small objects which are positioned in a
flock. This assumes that YOLOv3 could have disadvantages detecting
tightly parked cars from satellite images or other objects that are



closely placed in open-spaces. Despite Mask-RCNN having higher
correct localization predictions than YOLO, it makes more errors in
the image background, mistaking it for the object, whereas one of
YOLO’s specialties is discovering the image background. In this
project’s case, making use of Mask-RCNN is assumed to result in
many false-positives, but those could potentially be reduced by
eliminating the background with YOLOv3 or YOLO, achieved by
combining the two models. Certain aspects of those algorithms, such
as the combination of Mask-RCNN and YOLO with the image
processing from Ammour N. et al and Audebert N. et al, could be
implemented in this proof of concept.

Once the PoC is complete, the following main research question
will be answered: Is it feasible to detect objects in satellite pictures
of open-space areas and measure their occupancy?

2 MATERIALS AND METHODS

2.1 Dataset

One of the defined classes which the final neural network must detect
is cars from satellite images. The dataset that was used for the
training of car detection was built from scratch. A further large-scale
dataset, called DOTA, has also been used in regards of more complex
networks. The networks in this paper will make use of the custom
dataset, consisting of Google Maps images in satellite view and the
DOTA dataset, which is assumed to be sufficient for this PoC.

2.1.1 Custom sample collection

The process of gathering the samples for the custom dataset is
described in the process diagram in Appendix A:

The samples can be very easily collected with the use of a web
interface that accepts the name of a city as a parameter. On
confirmation, a request to the Google Maps API is made to fetch all
parking lots in that particular city, furthermore picture of the parking
lots in satellite view are downloaded in PNG format and lastly - they
are ran through the classifier to detect if a picture contains a parking
lot or is a false positive and store it in the appropriate folder. The
classifier is a basic CNN created with the goal to detect false positive
or pictures of indoor parking lots fetched from Google Maps. Since
those images had no visible parking lots, they were excluded from the
dataset. The CNN used has a basic architecture pictured in Appendix
B.

Sample images of the custom dataset are shown below.

Fig. 1. Custom dataset sample image 1

Fig. 2. Custom dataset sample image 2

2.1.2 DOTA
The DOTA dataset is a large-scale dataset built for the detection of
objects or areas from aerial/satellite images, most notably vehicles,
airplanes, ships and sports fields, sea fields (swimming pools,
reservoirs, etc.) and specific building types. It is one of the biggest
datasets available on aerial and satellite images, consisting of 2806
images with dimensions of 4000 x 4000 pixels. The images contain
more than 188,282 instances of objects, annotated using arbitrary
quadrilaterals, as stated by Zhen Zhu et. al.

2.1.3 Annotation
A total of 360 positive and 420 of negative samples have been
collected, majority of which were done by the web interface, which is
elaborated in the below sub-chapter. Those samples were used to train
the above-mentioned classifier. 147 out of the 360 positive samples
have been annotated. The annotation process was initially done by
using an annotation tool called LabelImg. Once 80 images were
annotated, the network that was trained was able to output some of
the cars in the images. This allowed for the creation of a web tool that
made the annotation process easier. The VOC annotation format was
used. The DOTA dataset uses the same standard, however, instead of
one xmin ymin and xmax ymax it takes a bounding box annotation of xi
and yi where i is the vertices of the edges of the object.

2.2 Software and Hardware
2.2.1 Web Interface
To ease the process of data gathering, annotation and analysis, a web
interface, currently hosted locally, has been developed using Node.js
with the Express MVC framework. The reason behind the decision to
use Node.js is due to the simplicity of an all-javascript web
application, its speed, and the ease of executing python processes,
which are vital for model inference and training. After the first batch
of training, the network was able to output coordinates of bounding
boxes wrapped around each car. The initial results were inaccurate,
however, using HTML5’s Canvas library, an online annotation tool
was created. Every sample downloaded from Google Maps API to
the web server was put through the neural network to output potential
coordinates of bounding boxes and store the coordinates in a
MongoDB database. Within the web interface, the users are able to
change, delete and add new bounding boxes and store the new,
corrected coordinates in the database. Lastly, the web interface gives
a visual representation of the system to users. Currently the following
actions can be done through the interface:

• Add custom dataset

• Create model with custom class for object detection

• Fetch parking lot samples based on city

• Track progress of the models in training

• Perform CRUD on the database

• Annotate samples



2.2.2 Software
The usage of the appropriate software was vital to achieve the
end-goal, starting with Python version 3.7 and the Mask-RCNN[7]
neural network library for the model training and inference. Further
Python packages for assistance include NumPy, sklearn, matplotlib,
OpenCV, and others. Behind Mask-RCNN lies the Keras High-Level
neural network API library. To perform GPU training efficiently, a
Cuda version of 10.1 was also made use of. The web application
consists of the usage of Node.js version 10.15.3 and Express3 for the
backend. The frontend consists of in-built technologies such as pure
javascript and HTML5 Canvas for the annotations. Google Maps API
is used for the retrieval of locations and samples.

2.2.3 Mask-RCNN
According to Ross Girschick et. al. (2018) Mask-RCNN takes the
approach of detecting objects in an image and generating a mask for
the objects simultaneously. This makes Mask-RCNN a simple and
effective approach for initial testing of whether object detection from
aerial or satellite images is feasible.

Stated by Xiang Zhang (2018)[8], Mask-RCNN’s structure is
based on two stages. The first stage consists of four convolutional
layers, which extract feature maps of an input image. An additional
four pooling layers are succeeding the convolutional layers in order to
down sample the feature maps by summarizing the presence of
features in patches of the feature maps, as explained by Jason
Brownlee (2019)[9]. Lastly, the sample is passed to a Region
Proposal Network, which outputs a binary class and proposed regions
with potential bounding boxes. In the second stage, another network
receives the ROI and defines the classes and draws bounding boxes
and masks of the objects.

Fig. 3. Mask-RCNN Neural Network Structure (Xiang Zhan, 2018)

2.2.4 Rotated Bounding Boxes
In addition to Mask-RCNN, which outputs horizontal bounding boxes,
other neural networks that output rotated bounding boxes will also be
considered. Both methods will be tested and finally compared. The
neural networks that will be used are the following:

• DRBox Algorithm

• SCRDet-R2CNN

DRBox is a deep-learning object detection network which focuses on
the detection of vehicles, airplanes and ships in remote sensing images.
DRBox is capable of outputting rotated bounding boxes by making it

learn not only the location and size as most generic networks, but also
the angle of the target objects. This gives the network the awareness
of orientation, which makes the results of DRBox rotation-invariant.
The following figure showcases results originating from DRBox:

Fig. 4. DRBox official testing results on DOTA testing dataset

DRBox stems from the Caffe[10] deep-learning framework. Liu
Lei et al[11] states that the input image is initially put through
multi-layer convolutional layers to generate detection results. The
final convolutional layer being for prediction and the others - for
feature extraction. The sliding boxes that search for the object, in the
case of DRBox, are also rotating. The boxes are rotated to different
angles with different confidence levels and finally, the predicted
bounding boxes are sorted by confidence level.

Fig. 5. DRBox Neural Network structure (Lei Liu, 2017)

SCRDet-R2CNN is a robust detection network for small, cluttered
and oriented objects, based on R2CNN. This makes the network very
effective for detecting objects from aerial or satellite images. Lastly,
according to Xue Yang et al[12] the network has an added IoU constant
factor to the LI loss, which addresses the boundary problem of the



rotating bounding box. Lastly, the bounding box inputs that are given
to the network are - x0 y0, x1 y1, x2 y2, x3 y3 - which represent the
vertices of the 4 points that make up the bounding box, x0 and y0
always being the top left corner of the detected object.

Fig. 6. SCRDet-R2CNN official Results on the DOTA testing dataset

The structure and process of SCRDet-R2CNN consists of two
stages - at first, the feature map has reduced noise and more feature
information by adding SF-Net and MD-Net. This stage still regresses
a horizontal box. With the required parameters and the rotation
non-maximum suppression (R-NMS) operation for the proposals, a
final oriented result is received. The structure is visualized in
Appendix C.

2.2.5 Hardware

The following hardware described in table 1. were used to train the
neural networks:

Table 1. Hardware used to train the neural networks.
Hardware Specification

GPU NVIDIA RTX2070
GPU memory 8GB

RAM 14.75GB
CPU 12 Cores
OS DEbian 10.1

CUDA versions 10.1 and 9

3 EXPERIMENTS

The end goal is to achieve high accuracy in counting objects of
interest while maintaining a good performance, hence why multiple
networks and structures are going to be experimented. The initial
experiments will be performed on an implementation of Mask-RCNN
using Keras to estimate the feasibility of object detection of aerial and
satellite images. Since Mask-RCNN outputs horizontal bounding
boxes, other neural networks with support for rotational bounding
boxes will also be experimented. The latter is assumed to have less
background clutter for easier counting. The results from the networks
that tackle rotating boundig boxes - DRBox and SCRDet-R2CNN,
will be visualized, analyzed and compared. The final results of those

networks will be directly assisting in the measurement of open-space
area occupancy by calculating how busy certain areas are.

3.1 Experiment: Mask-RCNN
The experiments to be performed with Mask-RCNN will ascertain the
feasibility of object detection in satellite images. A plain Mask-RCNN
network will be trained on the custom dataset that was gathered using
the Google Maps API. The training of the model will be done with
the parameters described below in table 2.: The dataset is split into

Table 2. Mask-RCNN training parameters and values.
Parameter Value

Epochs 900
Epoch Steps 1000

Learning Rate 0.001
Learning Momentum 0.9

Batch Size 2
Backbone Resnet101
Pool Size 7

Mask Pool Size 14

300 images for training, 100 for validation and 50 for testing. Once
trained, inference will be done on a set of sample images from Google
Maps that were not included in the training dataset.

3.2 Experiment: DRBox
The experiments with DRBox are intended to achieve detection with
rotated bounding boxes. The DRBox model, which was pre-trained
on the DOTA dataset, will be ran on a small set of samples from the
custom-gathered Google Maps dataset and later the results analyzed
and compared to other solutions. The following prerequisites must be
satisfied before the experiments can take place:

• Caffe installation and configuration

• MATLAB

• VGGNet

• gcc 6.0

• Cuda 9.0

• NVIDIA GPU with atleast 12GB of memory

3.3 Experiment: SCRDet-R2CNN

SCRDet-R2CNN, similarly to DRBox, will be experimented to
achieve detection with rotated bounding boxes. This network will be
trained on a modified DOTA dataset, where images that do not
contain the objects of interest will be removed, resulting in a total of
7600 images. The pictures used for validation are an additional part
of the DOTA dataset - a total of 6200 images, and lastly the testing
will be performed on a small set of images of parking lots from
Leeuwarden. The network will have the task to detect two classes -
large and small vehicles. The training will be done with the following
configuration parameters described in table 3.:

Furthermore, the following RPN configurations are found in table
4.:

Lastly, the Fast-RCNN parameters are presented in table 5.:
The requirements to run SCRDet-R2CNN can be found in

Appendix D.

4 RESULTS

The final results from the experiments performed and designed using
different algorithms and tools will be elaborated in detail in this
chapter.



Table 3. SCRDet-R2CNN training parameters and values.
Parameter Value

Fixed blocks 2
RPN location loss weight 1 / 7.0

RPN classification loss weight 2.0
Fast-RCNN location loss weight 4.0

Fast-RCNN classification loss weight 2
RPN sigma 3.0
Backbone Resnet101

Momentum 2
Learning rate 0.0003

Epoch iterations 21 000
Batch size 1

Table 4. SCRDet-R2CNN RPN configurations.
Parameter Value
Kernel size 3

RPN IOU positive threshold 0.7
RPN IOU negative threshold 0.3

RPN minibatch size 512
RPN positive rate 0.5

RPN sigma 3.0

4.1 SCRDet-R2CNN

SCRDet-R2CNN has shown to have the highest F1 score of the
networks compared. This algorithm surrounds the objects of interest
with a rotated bounding box with the least possible amount of
background noise. The outputs are 2 images - one with the objects
surrounded with a horizontal bounding box and another - with a
rotated bounding box The following images are inferenced pictures
with horizontal bounding boxes:

Fig. 7. SCRDet-R2CNN Horizontal inference resulting image

Fig. 8. SCRDet-R2CNN Horizontal inference resulting image

Table 5. SCRDet-R2CNN parameters.
Parameter Value

ROI size 14
ROI pool kernel size 2

Keep probability 1.0
Score threshold 0.1

Fast-RCNN Horizontal NMS IOU threshold 0.4
Fast-RCNN Rotated NMS IOU threshold 0.1

Fast-RCNN IOU positive threshold 0.4
Fast-RCNN IOU negative threshold 0.0

Fast-RCNN positive rate 0.4

In the images below are the rotated versions of the bounding
boxes, which remove more noise and give a clearer representation of
the object.

Fig. 9. SCRDet-R2CNN Rotated inference resulting image

Fig. 10. SCRDet-R2CNN Rotated inference resulting image

Several inconsistencies do exist in the case of pictures with smaller
resolution, which portray the cars in the images smaller too, making it
harder for the network to detect them. One of those examples is below:



Fig. 11. SCRDet-R2CNN Inconsistent inference image

The following table 6. represents the final results - F1 score, recall
and precision of the network.

Table 6. SCRDet-R2CNN F1, precision, recall and classes.
F1 Recall Precision Class

77.99 92 68 small-vehicle
87.89 88 86 large-vehicle

4.2 Mask-RCNN

Mask-RCNN also has produced desirable results, however it is less
precise than SCRDet-R2CNN and contains more false-positives.
Another downside is the horizontal bounding boxes which create
more noise and less clear representations of the object. The following
plots showcase the results that were inferred:

Fig. 12. Mask-RCNN inference resulting image

Fig. 13. Mask-RCNN inference resulting image

Fig. 14. Mask-RCNN inference resulting image

Finally, table 7. contains the evaluaton results for the Mask-RCNN
network:

Table 7. Mask-RCNN F1, recall, precision and class.
F1 Recall Precision Class

67.59 81 58 small-vehicle

4.3 DRBox
DRBox has successfully produced rotated bounding boxes, however,
the object detection is highly inaccurate. Furthermore, DRBox allows
for the detection of one class only, which does not convenience the
research requirements. In the majority of the cases, a high percentage
of the bounding boxes are missplaced. The following image depicts
the results from DRBox:

Fig. 15. DRBox resulting image

5 DISCUSSION AND CONCLUSION

After an extensive research has been conducted on the problem
description of ”how accurate can a neural network measure tourism



and calculate objects of interest in an open area from satellite view?”,
a conclusion has been reached.

The first experiment, conducted using Mask-RCNN, had the goal
to give an overview of whether it is feasible to detect objects of
interest in satellite images. 450 samples have been fetched from
Google Maps and annotated using the VOC PASCAL format and
trained on 900 epochs. Despite the small dataset, the output of
Mask-RCNN was surprisingly accurate, with certain false-positives.
Mask-RCNN holds great potential for further experiments with a
larger dataset, but is not viable for current usage. It has, however,
presented a new issue - the problem of horizontal bounding boxes.
Horizontal bounding boxes take additional space, increasing the noise
inside the region of the object, which creates difficulties in flock of
objects. Furthermore, the output image becomes less clear. DRBox is
one of the solutions that tackles this problem by accepting a 5th
variable in the annotation - the angle, which makes the model learn
about the orientation of the objects. The DRBox model was trained
on the DOTA dataset, containing over 14,000 aerial images. Despite
the large-scale dataset, the results from DRBox were not sufficient for
use. A substantial amount of the bounding boxes were placed wrong,
however, the bounding boxes were rotated. It is concluded that
DRBox is not viable for current and future use.

Finally, the SCRDet-R2CNN network, which was also trained on a
modified DOTA dataset, where images with only unnecessary objects
such as sports fields, water tanks, etc.were removed, provided the best
possible results from the experimented options with an F1 score of
77.99% for small vehicles and 87.89% for large vehicles.
SCRDet-R2CNN, unlike DRBox uses polygon bounding box
annotation, which connects 4 points with their X and Y coordinate.
This approach has proven to be successful by the experiments
conducted and their results. SCRDet-R2CNN has the highest
precision rate, with few inconsistencies in smaller resolution pictures.
This issue can be tackled by extending the DOTA dataset with
smaller resolution pictures. In conclusion, SCRDet-R2CNN creates
desirable results and is usable presently.

In conclusion, Mask-RCNN shows promising results, however,
horizontal bounding boxes are not as efficient. With an F1 score of
67.59 for small vehicles, Mask-RCNN is second in terms of
suitability, DRBox being last with majority of its detections being
wrong, as pictured in the results. For rotating bounding boxes and
detection, SCRDet-R2CN outperforms both networks with an
outstanding F1 score of 87.89 for large vehicles, such as trucks, and
77.99 for small vehicles. Thus, object detection in satellite images is
shown to be feasible and measurable.

6 FUTURE WORK

After extensive research, it has been concluded that object detection in
aerial images is a feasible goal. This gives room for improvements on
the already made progress in this paper.

6.1 DOTA dataset
Most of the false-positives or missed detections stem from the size of
the input images. The DOTA dataset generally contains samples of
800x800/1200x1200 resolution. When a bigger/smaller input is given,
difficulties will arise. Those could be avoided by further extending the
dataset with more bigger and smaller samples. Due to time limitations
in this project, enough amount of diverse pixel pictures could not be
gathered.

6.2 Mask-RCNN
Mask-RCNN has produced promising results, thus it could be a
subject for further extension. Recommended future work on this
network would be to train on a larger dataset and add awareness to
orientation.

6.3 SCRDet-R2CNN

SCRDet-R2CNN is a large network with orientation awareness.
Currently, it has only been trained for 21 000 steps due to time

limitations. Yang Xue et al have trained their functional network for
600 000, which gives better results, however, their use case includes
other unnecessary objects for this project such as detecting football
fields, water reservoirs, etc. which in the case of this project, results
in unnecessary detections, hence why the use of their pre-trained
network is not encouraged.
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7 APPENDICES

A
DATA COLLECTION PROCESS DIAGRAM

Fig. 16. Data collection process diagram through the web interface

B
CLASSIFIER ARCHITECTURE

Fig. 17. Parking Lot Classifier architecture



C
SCRDET-R2CNN STRUCTURE

Fig. 18. SCRDet-R2CNN Neural Network structure

D
REQUIREMENTS FOR SCRDET-R2CNN

• Python 2.7

• opencv 2

• CUDA >= 8.0

• Tensorflow >= 1.2.0

• Pre-trained models Resnet50 and Resnet101, Mobilenetv2 and a
custom-trained R2CNN model


